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A CLASS OF POLYNOMIAL SOLUTIONS IN 
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The conditions for the existence of a class of polynomial solutions of the equations of motion of a gyrostat in a magnetic field 
are studied taking the Barnett-London effect [1, 2] into account. It is shown that if the condition of motion isotonicity is imposed 
when the moving and stationary hodographs of the angular velocity are symmetric images of one another in the plane tangent 
to them, the problem can be solved completely and yields two new cases of integrability of the equations of motion. © 1998 
Elsevier Science Ltd. All tights reserved. 

Polynomial solutions of the structure under consideration have been investigated completely in the 
classical problem of the motion of a rigid body [3--6] and partially in the generalized problem of dynamics, 
which can be described by the well-known hydrodynamical analogue of the Kirchhoff equation [7]. 

1. FORMULATION OF THE PROBLEM 

It is well known th~Lt a rotating ferromagnetic medium becomes magnetized along the axis of rotation 
(the Barnett effect). ~laae magnetic moment in M = B(o, where B is a symmetric linear operator. A similar 
phenomenon also occurs in the case of a rotating rigid body (the London effect). Note thatB is a diagonal 
operator in the principal system of coordinates of the gyrostat. We shall therefore consider equations 
of motion of the form [1, 2] 

A I ~  1 = (A 2 - A 3 )¢al2ft) 3 + ~,2(03 - ~,3(02 + B2iI)2V 3 - B3tl)3V 2 + 

+ s 2 V 3 - $ 3 V 2 + ( C 3 - C 2 ) v 2 v 3 ,  ~tl = t 0 3 v 2 - t l ) 2 v  3 (1 2 3) 

They admit of only two first integrals 

3 3 
~" ( A / o i  + ~i )Vi  = k, ~'. V 2 = 1 
i=l i=l 

(1.1) 

(1.2) 

In (1.1) and (1.2) oi are the components of the angular velocity vector, vi are the components of the 
magnetic field direction vector, 7q are the components of the gyrostatic momentum, si are the components 
of the centre of mass, A i are the components of the inertia tensor, B i are the components of B, Ci are 
the components of the matrix C characterizing the Newtonian attraction, a dot over a variable denotes 
the corresponding derivative, and the symbol (123) indicates that the remaining equations can be 
obtained by cyclic permutation of indices. 

In (1.1) and (1.2) we put 

e l = P ,  ¢~2 =q, ¢o3 =r ,  ~,l =Z, k 2 = L  3=0, s l=s ,  s 2 = s  3 = 0  (1.3) 

and we shall seek solutions of the resulting equations in the form 

n m I 
q2 = Q(p)= ~, bkpt, r 2 = R(p)= ~ cip i, vl = 9 ( p ) =  ~ ajp j (1.4) 

k=O i=0 j~O 
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v 2 = q V ( p )  ' v 3 = r ~ ( p )  ' V(p )  = ~.~gtpk,  ~ ( p ) = ~ . l  f ip l  
k=O i=0 

H e r e  n, m,  1, nl,  m l  ~ N or zero  and b, ,  ci, aj, gk, ft are cons tant  p a r a m e t e r s  to be  de te rmined .  

Note that in the classical problem of the motion of a rigid body the solutions of Goryachev [3], Steklov [4], and 
Kowalewsky [5] belong to these classes. For Steklov's solution m = n = 2, l = 2, ml = nl = 1, for Goryachev's 
solution n = 2, m = 4,1 = 4, nl = 3, ml = 1, and for Kowalewsky's solution n = 2, m = 3, l = 3, n I = 2, m I = 1. 
Kharlamov [6] extended Steklov's and Kowalewsky's solutions to the case of gyrostat motion. 

We subst i tute (1.4) into (1.1) and (1.2) and take (1.3) into account.  We the reby  obta in  

Ai OI/(P) - x (p ) )  = 9 ' ( p ) [A  2 - A a + B2~(p) - B3V(p) + (C 3 - C 2 ) ¥ ( p ) x ( p ) ]  (1.5) 

A 2 Q ' ( p ) ( ~ ( p )  - ~ ( p ) )  = 2tp'(p)[(A 3 - A 1 )P + B3{p(p)- Bi p , r (p  ) -  

- ~ , -  sx(p)  + ( C I - C3)tp(p)x(p)] 

A3R' (p ) (~(p)  - ~ ( p ) )  = 2(p'(p)[(A ! - A 2)p + B l p ~ ( p ) -  B2~o(p ) + 

+Z + s ~ ( p )  + (C2 - C~)(p(p)w(p)]  

( Q ( p ) V  2 ( p ) ) ' ( ~ ( p )  - ~(p))  = 2 tp ' (p )¥ (p ) (px (p )  - tp(p)) 

( R ( p ) x  2 ( p ) ) ' ( ¥ ( p )  - x (p)  ) = 2(p" (p  )~ (p ) ( t p (p ) -  PW(P) ) 

b = ((p,(p))-I ( ¥ ( p )  _ ~(p)(Q(p)R(p)))~ 

(p2 (p)  _ 1 + Q ( p ) ¥ 2  (p)  + R(p)x2  (p)  = 0 

(Alp + ~,)(p(p) + A2Q(p)~(p )  + A3R(P)~(p ) = k 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

( the derivative with respec t  t o p  is deno ted  by a pr ime) .  Equa t ion  (1.10) can be used  to de t e rminep ( t ) .  
Following [7], we shall a ssume tha t  the gyrostat  is subject  to isoconic mot ion  within the f r a m e w o r k  

of  (1.4), i.e. the re la t ion 

p ( t p ( p ) -  E)+ Q ( p ) ~ ( p ) +  R ( p ) x ( p )  = 0 (1.13) 

holds, where  e takes  the values  + 1. 

2. T H E  C A S E  m I = n 1 = 0 

The  es t imat ion  of  the m a x i m u m  degrees  of  polynomials  is one  of  the ma in  p rob l ems  in the study of  
solutions (1.4). T h e  solut ion o f  this p r o b l e m  gives rise to a n u m b e r  of  s ingular  cases. 

Cons ider  Eqs  (1.5)-(1.7).  Since ¥ (p )  - x(p)  # 0, it follows that  9(P) is a l inear  function,  and 
Q(p)  and  R(p)  are  quadra t ic  funct ions o f p .  Substi tuting these funct ions into (1.5)-(1.9)  and  (1.11), 
we obtain a system of  a lgebraic  equat ions,  which imply, in part icular ,  that  big0 + c~f0 = 0, a0 = e, 
b0 = Co = 0. We designate  go and f0 to be  the f ree  p a r a m e t e r s  in the final solut ion of  this system. T h e n  
we have 

a I = At(g 0 - fo)[A2 - A  3 + B 2 f  0 - B 3 g  0 + ( C  3 - C 2 ) g o f o ]  -I 

b 2 = a l ( fo  - a l ) g o l ( g o  - - f 0 )  - I  , b 1 = -2aoa lgo l (go  - f o )  -I 

c 2 = a! (a I - go )fo -i (go - fo )-1, Cl = 2 a o a l f o  I (go - fo ) - I  

go (L  + sfo ) = a 0 [(C 1 - C 3 )goJ~ + B3go + A2 ] 

fo(~, + sg O) = ao[(C I - C2)gof  0 + B2f  0 + A 3 ] 

(2.1) 

(2.2) 
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[A2f0 + (AI - A3)go + Bigofo ][A2 - A3 + B2fo - B3go + (Ca - C 2)gofo ] - 

-AI  (go - fo)tA2 + B3go  + (CI  - C3)gofo ] = 0 (2 .3)  

[ A3go + ( A1 - A2 ) fo + l~gofo ][A2 - A3 + B 2 f  o - Bag o + ( C l - Ca )gofo ] - 

-AI (:go - fo )[A3 "1- B 2 f  0 + ( C 1 - C 2 )gofo ] = 0 (2.4) 

Assuming that go(A 1 -A3)  + fo(A2 -A1)  ~ 0, we can find CF-C3 and C3--C2 from (2.3) and (2.4). We 
can then find k and s from (2.2), since go - f0  ~ 0. Equalities (2.1) give the values of the coefficients of  
the polynomial solution 

q 2 =  p ( b 2 p + b l ) ,  r2 = p ( c 2 p + q ) ,  vl  = a l p + a  o 

v 2 = go[p(b2p  + b I )]~,  v 3 = f o [ p ( c 2 p  + c~)]~ (2.5) 

P = a{  ~ (go - fo )P[(b2P + b~ )(¢2P + c~ )]~ 

From (2.5) it follows that the solution can be expressed in terms of elementary functions of time. 

3. T H E  CASE nl ~ 0, rn 1 = 0 

We represent Eqs ('.1.11)-(1.13) in the form 

Q ( p ) W ( p ) ( A  2 - A 3) = (A 3 - A ! )pep(p) - gep(p) - A3F. p + k 

R ( p ) x (  p )( A, 2 - A 3) = ( A 1 - A 2 )pq~( p ) + 2~,¢p( p ) + A2~. p - k 

(3.1) 

(A 2 _ A3)(cp2 ( p ) _  1) + ~(p)[(A 3 - A l ) I ~ ( P )  - ~ P ( P ) -  A3Ep + k] + 

+>:(p)[(A 1 - A 2)pq~(p) + 2~p(p) + a 2 e p -  k] = 0 

Two alternatives follow from (1.5) 

(3.2) 

n,=l-1, if (ca-C2)fo-B3=0 (3.3) 

l=l, if (ca-C2)f0-B3,0  (3.4) 

In the case (3.3) it is clear that l > 1. We write Eqs (1.8) and (1.9) in the form 

( Q ( P ) V 2 ( P ) ) ' ( V ( P )  - f o )  = 2¢p' (P)V(P)(Pfo - ~P(p)) 

R ' ( p ) ( w ( p )  - f 0 ) f 0  = 2 q ~ ' ( p ) ( ~ 0 ( p )  - pv(p)) 
(3.5) 

If we assume that condition (3.4) is satisfied, it follows from (3.5) that 2nl + n ~< 2, which is impossible, 
since nl ~ 0. It fo l lows  that only (3.3) is possible. Then equalities (3.5) yield n = 2, m ~ l + 1. Now 
consider (3.1) and (3.2). Given thatAz = A 3, these equalities imply that I = 1. ThereforeA2 ~ A3, and 
from (1.6) and (1.7) we obtain 

C~ = C2, B3 = 0 (3.6) 

By (3.3) and (3.6) C1 = C2 = C3, and these parameters do not appear in (1.1). 
Consider the case m = l + 1. It follows from (1.5)-(1.7), (3.1), (3.2) and (3.5) that 

gl-I = P.'lal, A21"tb2 = A3 - Ai - B l f o  

q + l f o ( A 2 - A 3 ) = a i ( A i - A 2 ) ,  (A2 - A3)a j  + (A3 - A~)gi_r -- 0 
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b292_l + a 2 = O, (! + 1)Cl+lfogt_ 1 = 21at(a t - g t - i )  

I,t = Al l  (A2 - A 3 + B2f  0 ) 

(3.7) 

F rom (3.7), by el iminat ing gt_l, ct+l in the last equa t ion  we obta in  I = 1, which is impossible .  T h e r e f o r e  
m < l + 1. T h e n  by (3.7) we have 

A j = A  2, b 2 = - 1 ,  ~ t = l l l ,  gt-i  = a t ,  /~ =Bz  (3.8) 

Le t  us consider  the second equali ty in (3.1). Two al ternat ives follow f rom it: (1) ~, ;e 0, m = 1 or  (2) 
~, = 0, m = 1. For  the second al ternative the second equat ion  in (3.5) implies t ha t  at = gt-1, gl-2 = al-1, 
since n 1 = l - 1. But  because  of  (3.8), Eq. (1.6) yields the equali ty gl-2 = (l - 1)F'at_l,  which toge ther  
with the equali t ies ob ta ined  before  leads to a contradict ion.  

Consider  the case when  ~, ;~ 0, m = 1. By (1.5) ~ (p )  = f0 + ~ttp'(p). Le t  us c o m p a r e  the expressions 
for  R(p)  ob ta ined  f r o m  (3.1) and (3.5). We then have an equa t ion  f rom which to de t e rmine  (p(p) 

It( k* + P)¢~'(P)-- q~P)+  PrO +(g*! 1 = 0 

k* = k[2(A 1 - A 3 ) ]  -I ,  or* = At~:[2(A l - A 3 ) ]  "-i 

(3.9) 

We now consider  Eqs  (3.2) and (3.9), assuming that  l > 2. Equa t ing  the  coefficients of  the powers  
2 / -  1 and l - 1, we obta in  2/k*al - al-1 = 0 and Ig*al - al-x = 0, respectively,  which is impossible.  I t  
follows that  l = 2, and f rom (3.2) and (3.9) we again have the  relat ions 

4 k * a 2 - a l  + 2 fo  =O, 2 k * a 2 - a I  + 2 fo  =O 

which cannot  be  satisfied for  a 2 ;~ 0. I t  follows that  the case nl  ;e 0, m 1 = 0 is impossible.  

4. T H E  C A S E  l = 1 

This case is also singular. We assume tha tA2 ;e A3. Then  (3.1) implies t h a t m  = n = 1, m l  = nl  = 1. 
Consider  the equa t ion  ob ta ined  as a result  o f  adding (1.8) and (1.9). Equa t ing  to zero  the  coefficient  
o f p  in this equat ion,  we obtain  

3(/hg~ + clA) = -2al  (4.1) 

The  isoconicity condi t ion (1.13) yields big1 + c~fl = - a l ,  which contradicts  (4.1). Consequent ly ,  one  
cannot  pu tA2  = A3. I f  we assume that  n 1 > ml ,  then  the condi t ion for  the degrees  o f  the  polynomials  
in (1.9) and (1.10) to be  the same  implies that  n + nl  = 2, m + m l  = 2, i.e. we again arr ive at  the case 
cons idered  above.  W h e n  ml  = nl,  the s ame  equat ions  lead to the  condi t ions n + nl  ~< 2, m + nl  ~< 2, 
i.e. no new cases will appear .  T h e  case when  l = 1 is impossible,  in general .  

5. T H E  G E N E R A L  C A S E  

Consider  the case when  l ;e 1, n l  ;~ 0, m l  ~ 0. In this case (3.1) implies tha tA2 ;e A3. T h e  m a x i m u m  
degree  of  the polynomia l  on  the r ight-hand side of  (1.5) is a t ta ined by the t e rm  conta ining the  p roduc t  
o f  the funct ion and  hence  (p(p), ×(p),  and hence  it is necessary to put  

C3 = C2 (5.1) 

L e t A 1  ;e A2 ,A  3 ;e A1 ( the case of  equali ty leads to m = n = 2, ml  = nl  = l - 1). T h e n  f rom (3.1) 
we have n + n 1 = l + 1, m + m l  = 1 + 1. We now consider  (3.2) and assume  that  nl  > ml .  T h e n  n 1 = 
l - 1, and so n = 2. Since m l  < nl  < l - 1, f rom (1.5) we obta in  B 3 = B2 = 0 and 

~ ( p ) - x ( p ) = t x , t p ' ( p ) ,  g , = ( A 2 - A 3 ) A ~  I 

Using this equal i ty we can e l iminate  the difference ¥ (p )  - ×(p) in (1.6). As  a result,  we obtain  an 
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equation whose left-hand side is a polynomial of  degree one and the right-hand side contains the 
expression (Ct - C2)q~(P)x(P), i.e. we must put C2 = C1. Analysing the equation in question in. a similar 
way, we get B1 = 0. "[he whole set of conditions which has been established gives the classical problem 
[6]. 

Let ml  = nl. Then m = n, n + nl = l + 1. From (1.5)-(1.7) it follows that B2 ~ B3, nl = l - 1, n = 
m = 2and  

f.i = It 'g,t '  f ,~-I = gig.x-1 . . . . .  A = Ittg, 

g__.L It2 It2 go-fo 
al := g l - l ,  a l - i  = -  g i - 2 ,  • a2 = g l ,  al = 

It3 (1 -- 1)g 3 ""  ~ B3 

= ~ '~ ,  B -I  Itl I t 2 = ( B 2 - B 3 )  2 , I t 3 = ( A 2 - A 3 + B 2 f o - B 3 g o ) A I  I 

(5.2) 

We consider equalities (3.1), (3.2) and (5.2), from which to determine b2, c2 and the conditions imposed 
on the parameters. We have 

b 2 = I t 2 ( A 3 - A t )  c2 = It2(AI-A2) 
II t3 (A2 - A3)' lit3 (A2 - A3 ) 

(5.3) 
It2 (A2 - A3 ) 1-1It31 + '43 - AI + It1 (AI -- A2 ) ---- 0 

Eliminating the difference ¥(p) - x(p) in (1.6) and (1.7) using (1.5), we obtain 

A2g3 (2b2p+...) = 2gt-1 (B3g3 l/-! - /~ i t t )P l  +.. .  

Aag 3 (2c2P+.. .) = 2gt_ ! ( B I _ B2it2it3,l-I  )p t  +.. .  

Since I > 1, from (5.!t) and (5.4) it follows that 

It3t = B3 t2nl-tit  1 = (a2  - a3)  -I 

(5.4) 

(5.5) 

Comparing (5.3) a:ad (5.5), we obtain the condition 

AI(B2 - B3) + A2(B3 - Bi)+ A3(B I - / / 2 ) = 0  (5.6) 

which can be parametrized as follows: 

A i = X 0 + X l n i  (5.7) 

On the basis of (5.3), (5.5) and (5.7) we have 

b2 = c 2 =  (5 .8 )  

We assume that I > 2. Then the expanded expression for the right-hand side of (5.4) yields 

B2al - I  - B Ig l -2  -- Sg l - I  = 0 (5.9) 

By (3.2) it follows from (5.9) that 

s ( / . 1 )  
g l - 2  = g l - I  (5.10)  

B| 

We equate to zero the coefficients o fp  I-1 in (1.13). Then 
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al-I + gl-i (bl + gf f l  ) + gl-2 (b2 + I.tic2 ) = 0 

But  b 2 + 11.:2 = -B1B~ 1 by (5.3) and (5.8). T h e n  f rom (5.11) we have  

bl + I - q q  = - s  I B2 

(5.11) 

(5.12) 

I f  we consider the equat ion obta ined as a result  of  adding (1.8) and (1.9) and el iminate  ¥ ( p )  - x(p)  in 
it using (1.5), then  equat ing  to zero  the coefficient  o f p  t-1 we obta in  

2(b 2 + ~tc2)(l  - 1 ) g l _  2 + ( b  1 + b t t q  ) ( 2 / -  1)gt_ I + 2 ( / -  1)at_ t = 0 

However ,  this equal i ty  contradic ts  (5.8)-(5.12),  so l = 2. 
Thus,  in the genera l  case we have 

q2 = Q(p)  = b2p2 + bl p + bo ' r 2 = R(p)  = c2p 2 + clp + c o 

vi = tp (p )=a2p2  + a l p + a o ,  v 2 = q ( g l p + g o ) ,  v 3 = r ( f l p +  fo)  

p = ~ 2 ~ ( Q ( p ) R ( p ) )  ~ ,  a =  B2, ~ = B 3  

(5.13) 

Rela t ions  (5.13) are  a solut ion of  (1.5)-(1.13) subject  to the condit ions 

~2 + ~i((Z-1)+ 0~(0 t -1)=  0, 3x0 = XlB 1 

al  4XtBl xl(Bl +3B2) A3 = xI(B! +3B3) 
= 3 ' A 2 =  3 ' 3 

3eotl3B I 2 
s = -  , ~, = ~ s , ~ t  

x1(a+l~) 

x , B  I (1 - c t ) (1  - ~ )  b2 = (1 - ~ )  1 - Ot 
a2 = 2sa[5 ' a ( a -  [5)' c2 = ~ ( o t -  ~) 

2 X l ( l  - ot - [5) 4s 4s 
at = 3ot13 ' bl = 3aB I ( a  - 13) ct 3~B 1 (or - ~) 

uiBl (1 --  Or)(1 --  [3) x i B  ! (1 - a ) ( 1  - 13) 

& =  2s~ ' ~ =  2sa  

s~ ! ( 2  - 3or - 3[~) 4 s  2 (1 - 2 0 t  - [~) 

a o = 9ot~3B 1 ' /70 = 9 0 ~ 2 ( [ 5 _ O t ) ( l _ O t ) ( l _ [ 3 )  

4s 2 (1 - (Z - 2~) x I (1 - IX - 2~) x I (1 - ~ - 200 
Co = 9[}Bi 2 ( a -  [3)(1- a ) ( 1 -  [~)' go = 3[} , f0 = 30t 

We shall give an example  when  the solut ion is real-valued.  Let  a ='1/2. T h e n  [~ -~ 0.8 and  there  is 
a range  o f p s  in which the condi t ions Q(p)  I> 0, R(p)  t> 0 are satisfied s imultaneously.  Assuming  that  
×1 > 0, it can be  shown that  the restr ict ions on the m o m e n t s  of  inert ia  are  also satisfied. Solut ion (5.13) 
can be r ep resen ted  in the f o r m  of  Jacobi  elliptic functions. 

Thus,  it has  been  p roved  that  isoconic mot ions  within the f r a m e w o r k  of  po lynomia l  solut ions exist 
only in two cases: (1) n l  = m l  = 0 and (2) n = m = 1 = 2, n l  = m l  = 1, which give two new solut ions 
(2.5) and (5.13) of  (1.1). 
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