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A CLASS OF POLYNOMIAL SOLUTIONS IN
THE PROBLEM OF THE MOTION OF A GYROSTAT
IN A MAGNETIC FIELD¥}
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Donetsk
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The conditions for the existence of a class of polynomial solutions of the equations of motion of a gyrostat in a magnetic field
are studied taking the Barnett~London effect [1, 2] into account. It is shown that if the condition of motion isoconicity is imposed
when the moving and stationary hodographs of the angular velocity are symmetric images of one another in the plane tangent
to them, the problem can be solved completely and yields two new cases of integrability of the equations of motion. © 1998
Elsevier Science Ltd. All rights reserved.

Polynomial solutions of the structure under consideration have been investigated completely in the
classical problem of the motion of a rigid body [3~6] and partially in the generalized problem of dynamics,
which can be described by the well-known hydrodynamical analogue of the Kirchhoff equation [7).

1. FORMULATION OF THE PROBLEM

It is well known that a rotating ferromagnetic medium becomes magnetized along the axis of rotation
(the Barnett effect). The magnetic moment in M = Bo, where B is a symmetric linear operator. A similar
phenomenon also occurs in the case of a rotating rigid body (the London effect). Note that B is a diagonal
operator in the principal system of coordinates of the gyrostat. We shall therefore consider equations
of motion of the form [1, 2]

A®; = (A, — A3)0,0; +A,03 — A0, + B,0,V; — Bwyv, +

(1.1)
+5V3 =53V, (G~ G)V,v3, vy =03v, —@,vy (1 2 3)
They admit of only two first integrals
3 3
g-l (Ao +X)v; =k, ¥ vI=1 (1.2)

i=1

In (1.1) and (1.2) oy are the components of the angular velocity vector, v; are the components of the
magnetic field direction vector, A; are the components of the gyrostatic momentum, s; are the components
of the centre of mass, 4; are the components of the inertia tensor, B; are the components of B, C; are
the components of the matrix C characterizing the Newtonian attraction, a dot over a variable denotes
the corresponding derivative, and the symbol (123) indicates that the remaining equations can be
obtained by cyclic permutation of indices.

In (1.1) and (1.2) we put

©=p @=q, 03=r, A=k Ay=A;=0, 5=5, $5,=5,=0 (1.3)
and we shall seek solutions of the resulting equations in the form

== 5 bt P =kp)=E o', v=ep)= 3 ap (14)

j=0
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Vi=q¥(p) Vi=rdp) W)= Tiapt, u(p)= 3 P

Here n, m, I, n;, my € N or zero and by, c;, aj, g, f; are constant parameters to be determined.

Note that in the classical problem of the motion of a rigid body the solutions of Goryachev [3], Steklov [4], and
Kowalewsky [5] belong to these classes. For Steklov’s solutionm = n = 2,1 = 2, m; = ny = 1, for Goryachev’s
solutionn = 2,m = 4,1 = 4, n; = 3, m; = 1, and for Kowalewsky’s solutionn =2, m =3,/ =3,ny =2, m; = 1.
Kharlamov [6] extended Steklov’s and Kowalewsky'’s solutions to the case of gyrostat motion.

We substitute (1.4) into (1.1) and (1.2) and take (1.3) into account. We thereby obtain

A (W(p)—%(p)) = @' (P Ay — Ay + Byx(p) ~ By (p) +(Cy — Gy (p)x(p)] 15)

A, Q' (PXW(p) - %x(p)) =20’ (P)(A; - A ) p + By@(p) — B, px(p) - (1.6)

=L =sx(p)+(C; - G3)O(p)x(p)]

AR (PYW(p)—%(p)) = 29°(P)(A, — Ay)p+ B, py(p) - B,o(p) + (1.7)
+A+sy(p)+(C, - Co(p)W(p))

QP ()Y (W(P) - %(p)) = 29" (D)W (P) px(p) - ®(P)) (1.8)

(R(PYXX(P)Y (W(p) - %(p)) = 2¢"(p)( P P(P) — PW(p)) 1.9

b =(@(p)) (W(p) - x(PXQ(P)R(p)): (1.10)

?2(p) -1+ Q(PIW*(p)+ R(p)x*(p) =0 (1.11)

(A p+2)0(p)+ A 0(p)V(p) + A3R(p)x(p) =k (1.12)

(the derivative with respect to p is denoted by a prime). Equation (1.10) can be used to determine p(z).
Following [7], we shall assume that the gyrostat is subject to isoconic motion within the framework
of (1.4), i.e. the relation

p(9(p)—e)+ Q(PIW(p)+ R(p)x(p)=0 (1.13)

holds, where € takes the values £1.

2. THE CASE m; = n, = 0

The estimation of the maximum degrees of polynomials is one of the main problems in the study of
solutions (1.4). The solution of this problem gives rise to a number of singular cases.

Consider Eqgs (1.5)—«(1.7). Since y(p) — »(p) # 0, it follows that @(p) is a linear function, and
Q(p) and R(p) are quadratic functions of p. Substituting these functions into (1.5)—(1.9) and (1.11),
we obtain a system of algebraic equations, which imply, in particular, that bigy + ¢ify = 0, ap = &,
by = cp = 0. We designate g, and fj to be the free parameters in the final solution of this system. Then
we have

ay = A(go — fo)lAy — Ay + B, fo — Bygy +(C; — Cy)go fy I

by =a\(fo-a)85 (80— fo)™'s by =—2apa185" (80 — f)™ 21)
¢, =aa-g)fy' @-f)" o= 2a4a, 5" (8o = f) .
8o (A +5fo) = ag[(C, — G5)go fyy + B3go + A, ]

Jo(A+589) =ao[(C, — Cy)gofoy + By fy + A3 ]

(2.2)
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[Axfo + (A~ A3)go + BigofollAy — Ay + By fy — Bago +(Ci - Cy)go fo 1 -
=A1(80 — fo)lA; + Bygo +(C, — C3)go fo1=0 (2.3)

[Asgo + (A = A2) fo + Bigo o)l A, — As + By fy — Bygy +(C, - G)gofol-
~A1(80 — fo)A3 + B, fy +(C, = Cy)80 f51= 0 (24

Assuming that go(4; —A43) + fo(4; —A;) # 0, we can find C;~C; and C3-C; from (2.3) and (2:4). We
can then find A and s from (2.2), since go ~ fy # 0. Equalities (2.1) give the values of the coefficients of
the polynomial solution

gt = plbyp+by), rt= pleap+c), Vi=apta
v2 = golphyp+ b)Y, vy = folplep+a N (2.5)
p=a7" (8o - f)Pl(byp+ by o p + )V

From (2.5) it follows that the solution can be expressed in terms of elementary functions of time.

3. THE CASEn, # 0, m; = 0
We represent Egs (1.11)-(1.13) in the form

A(PIV(PX) Ay — Ay) = (A3 - A po(p) —Ap(p) — Asep + k (31)

R(p)n(pX(Ay — Ay) = (A = A))po(p)+ Ap(p)+ Aep—k

(4~ 43X (P) =~ 1)+ W(P)(4; = 4)P9(p) - Mp(p)— Asep+ k] +
+3(P(A — A)P9(p) + Mp(p) + Agep~ k] =0 (3:2)
Two alternatives follow from (1.5)
m=Il-1 if (;~C)fy-B;=0 (33)
i=1, if (C;=C))fy—B,#0 (3.4)
In the case (3.3) it is clear that / > 1. We write Egs (1.8) and (1.9) in the form

QPIVH(P) (W(P) - fo) = 20" (P)W(P) S, — 9(p)) (35)

R(P)W(P) - fo)fo =29 (pX9(p) - p¥(p))

If we assume that condition (3.4) is satisfied, it follows from (3.5) that 22, + n < 2, which is impossible,
since ny # 0. It follows that only (3.3) is possible. Then equalities (3.5) yield n = 2, m <! + 1. Now
consider (3.1) and (3.2). Given that 4, = A4, these equalities imply that/ = 1. Therefore 4, # A3, and
from (1.6) and (1.7) we obtain

G=G, By=0 (3.6)

By (3.3) and (3.6) C; = C; = C;, and these parameters do not appear in (1.1).
Consider the case m = [ + 1. It follows from (1.5)-(1.7), (3.1), (3.2) and (3.5) that

811 =Ma;, Aub, = A, - A - B,f,

AR+ e, =2(Big_, - Byay),  bygy (A, — A)= (4, - A)a
Cifo(Ay — A) =ay(A ~ Ay), (A~ Ay)a +(A; —A)g_ =0
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bygl+ap =0, (+1)cp, 1 fogiy =2laa, —g_y) (3.7
H=A' (A - Ay + By fy)

From (3.7), by eliminating g, , ¢;,; in the last equation we obtain / = 1, which is impossible. Therefore
m <[ + 1. Then by (3.7) we have

A=4, by=-1, u=1/l, g_,=a, B =B (3.8)

Let us consider the second equality in (3.1). Two alternatives follow from it: (1) A# 0,m =l or (2)
A = 0, m = 1. For the second alternative the second equation in (3.5) implies that a) = 81, 812 = 811,
since n; = [ - 1. But because of (3.8), Eq. (1.6) yields the equality g,_, = (I — 1)I"'a,_;, which together
with the equalities obtained before leads to a contradiction.

Consider the case when A # 0, m = [. By (1.5) y(p) = fy + po’(p). Let us compare the expressions
for R(p) obtained from (3.1) and (3.5). We then have an equation from which to determine ¢(p)

B+ PO (P)- P+ ply + 'R =0 (3.9)
A =R2(A -A)T, o = AEl2(4, - AT
We now consider Eqs (3.2) and (3.9), assuming that [ > 2. Equating the coefficients of the powers
2] -1 and / - 1, we obtain 2/A*a; — a;; = 0 and IA*a; - a;_; = 0, respectively, which is impossible. It
follows that [ = 2, and from (3.2) and (3.9) we again have the relations
4 ay—a; +2f,=0, 2W'a,—a,+2f,=0

which cannot be satisfied for a, # 0. It follows that the case n, # 0, m; = 0 is impossible.

4. THE CASE ! =

This case is also singular. We assume that 4, # A43. Then (3.1) implies thatm =n=1,m; =n; = 1.
Consider the equation obtained as a result of adding (1.8) and (1.9). Equating to zero the coefficient
of p in this equation, we obtain

Mbg +af)=-2a (4.1)

The isoconicity condition (1.13) yields b,g; + c,fy = —ay, which contradicts (4.1). Consequently, one
cannot put A; = A;. If we assume that n; > m,, then the condition for the degrees of the polynomials
in (1.9) and (1.10) to be the same implies thatn + n; = 2, m + m; = 2, i.e. we again arrive at the case
considered above. When m; = n,, the same equations lead to the conditionsn + ny <2, m +n; <2,
i.e. no new cases will appear. The case when / = 1 is impossible, in general.

5. THE GENERAL CASE

Consider the case when/# 1,n;# 0,m;# 0. In this case (3.1) implies that 4, # A3. The maximum
degree of the polynomial on the right-hand side of (1.5) is attained by the term containing the product
of the function and hence ¢(p), »(p), and hence it is necessary to put

C3 = Cz (51)
Let A, # Ay, A3 # A, (the case of equality leads tom = n = 2, m; = n; = [ - 1). Then from (3.1)

we haven + ny =1+ 1,m + m; =1 + 1. We now consider (3.2) and assume that n; > m;. Thenn, =
I-1,and son = 2. Since m; < ny <[ -1, from (1.5) we obtain B; = B, = 0 and

VP~ () = @' (D), K = (A =~ ApAT
Using this equality we can eliminate the difference y(p) — %(p) in (1.6). As a result, we obtain an
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equation whose left-hand side is a polynomial of degree one and the right-hand side contains the
expression (C; — C2)¢(p)x(p), i.e. we must put C; = C;. Analysing the equation in question in a similar
way, we get B; = 0. The whole set of conditions which has been established gives the classical problem
[6].

Letm; = ny. Thenm = n,n + n; = + 1. From (1.5)«(1.7) it follows that B, # Bs,n; =1-1,n =
m = 2 and

f;q =ulgn|’ f;ll—l =u|gnl-—]$ seny _fl =l«|-|g|

M2 M M 8~ Jfo

a, = 81y G = a9y aeay Q9 = , = 5,2
! Iy -1 -y (-Dn, 81-2 2 M, & 9 0 (5.2)
W=t W =(B BB, Wy =(Ay- A +Bfy - Bigo)A"

B,

We consider equalities (3.1), (3.2) and (5.2), from which to determine b,, ¢; and the conditions imposed
on the parameters. We have

by = W, (A; —4y) ¢ = Kno(A —4y)
Iny(A; - A3) Iny(Ay - 4;)

I (5.3)
Eliminating the difference y(p) — »(p) in (1.6) and (1.7) using (1.5), we obtain
A3 2byp+...) =28, (B3 = Bu)p' +...
(5.4)
Asf3(2¢,p+...) = 28, (B = Byuop3' I )p' +..
Since [ > 1, from (5.3) and (5.4) it follows that
Wal = By, Bl 'uy' = (B, - B;) B (5.5)
Comparing (5.3) and (5.5), we obtain the condition
A|(By ~B3) + Ay (By - B)+ Ay(B, - By) =0 (5:6)
which can be parametrized as follows:
A, =%+%B; 5.7
On the basis of (5.3), (5.5) and (5.7) we have
B,(B;-B,) B,(B, - B))
by=—"—2—- ¢, =———2= 5.8
P B(B-B)' " By(B-By) 8
We assume that [ > 2. Then the expanded expression for the right-hand side of (5.4) yields
Bya; - Big;_, —sg,=0 (5.9
By (3.2) it follows from (5.9) that
-1
8i-2 = s B ' )81—1 (5.10)
1

We equate to zero the coefficients of p! in (1.13). Then
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ay + 81 (b + i)+ 812 (by +14cy) =0 (5.11)
But b, + pyc, = —B1B5 by (5.3) and (5.8). Then from (5.11) we have
b+ =-s/B, (5.12)

If we consider the equation obtained as a result of adding (1.8) and (1.9) and eliminate y(p) — %(p) in
it using (1.5), then equating to zero the coefficient of p'! we obtain

2(b2 + 'J.]Cz )(l - l)gl_z + (bl + ulcl )(21 - l)gl—l + 2([ - l)a,_l =0

However, this equality contradicts (5.8)~(5.12), so [ = 2.
Thus, in the general case we have
g’ =Q(p)=b,p? +bp+by, r*=R(p)=c,p® +op+c
=@(p)=ap’ +ap+ay, Vo= q(gxp+go), V3 =r(fip+fo) (5.13)
_a- l3 B,
, B=
B,
Relations (5.13) are a solution of (1.5)—(1.13) subject to the conditions
B2 +B(a—1)+a(a—1)=0, 3xy=%xB
A= 49231 4= B3B) (B +3B)

2R QPR(pYE, a==2

3 T 3
__ _3eaBB, 22
= @ep) M3
LomB-0)a-B) =B __1-«
2 2508 oa-P) > B@-P)
Jyl-e-p o, 4 4
308 308,(x-B)’ ' 3BB(a-P)
_xB(1-0)1-B) = % By (1—o)(1-B)
2sp v 250
2 < P (2-30-3p) _ 4s*(1-20.-B)
°" 9aBB, ' ° 9aB*(B-0)(1-a)1-B)
o = 452(1-0.-2B) _x(1-0-2B) f=x|(1—B-20t)
° = 9pBZ(a—P)1-0)(1-B) *° B 3a

We shall give an example when the solution is real-valued. Let o =1/2. Then B =~ 0.8 and there is
a range of ps in which the conditions Q(p) = 0, R(p) = 0 are satisfied simultaneously. Assuming that
%1 > 0, it can be shown that the restrictions on the moments of inertia are also satisfied. Solution (5.13)
can be represented in the form of Jacobi elliptic functions.

Thus, it has been proved that isoconic motxons within the framework of polynomial solutions exist
only in two cases: (1) ny =m; = 0and (2)n =m =1 = 2,n; = m; = 1, which give two new solutions
(2.5) and (5.13) of (1.1).
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